Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Alzheimers Dement ; 20(5): 3525-3542, 2024 May.
Artigo em Italiano | MEDLINE | ID: mdl-38623902

RESUMO

INTRODUCTION: Effective longitudinal biomarkers that track disease progression are needed to characterize the presymptomatic phase of genetic frontotemporal dementia (FTD). We investigate the utility of cerebral perfusion as one such biomarker in presymptomatic FTD mutation carriers. METHODS: We investigated longitudinal profiles of cerebral perfusion using arterial spin labeling magnetic resonance imaging in 42 C9orf72, 70 GRN, and 31 MAPT presymptomatic carriers and 158 non-carrier controls. Linear mixed effects models assessed perfusion up to 5 years after baseline assessment. RESULTS: Perfusion decline was evident in all three presymptomatic groups in global gray matter. Each group also featured its own regional pattern of hypoperfusion over time, with the left thalamus common to all groups. Frontal lobe regions featured lower perfusion in those who symptomatically converted versus asymptomatic carriers past their expected age of disease onset. DISCUSSION: Cerebral perfusion is a potential biomarker for assessing genetic FTD and its genetic subgroups prior to symptom onset. HIGHLIGHTS: Gray matter perfusion declines in at-risk genetic frontotemporal dementia (FTD). Regional perfusion decline differs between at-risk genetic FTD subgroups . Hypoperfusion in the left thalamus is common across all presymptomatic groups. Converters exhibit greater right frontal hypoperfusion than non-converters past their expected conversion date. Cerebral hypoperfusion is a potential early biomarker of genetic FTD.


Assuntos
Proteína C9orf72 , Circulação Cerebrovascular , Demência Frontotemporal , Imageamento por Ressonância Magnética , Proteínas tau , Humanos , Demência Frontotemporal/genética , Demência Frontotemporal/fisiopatologia , Demência Frontotemporal/diagnóstico por imagem , Feminino , Masculino , Pessoa de Meia-Idade , Estudos Longitudinais , Circulação Cerebrovascular/fisiologia , Circulação Cerebrovascular/genética , Proteína C9orf72/genética , Proteínas tau/genética , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Progranulinas/genética , Biomarcadores , Progressão da Doença , Encéfalo/diagnóstico por imagem , Heterozigoto , Mutação , Idoso , Marcadores de Spin , Adulto
2.
World J Biol Psychiatry ; 24(3): 260-265, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35748435

RESUMO

OBJECTIVES: Recurrent chromosome 22q11.2 deletions cause 22q11 deletion syndrome (22q11DS), a multisystem disorder associated with high rates of schizophrenia. Neuroanatomical changes on brain MRI have been reported in relation to 22q11DS. However, to date no 22q11DS neuroimaging studies have examined cerebral blood flow (CBF). This exploratory case-control study seeks to identify differences in regional cerebral blood flow between 22q11DS subjects and controls, and their association with psychotic symptoms. METHODS: This study of 23 adults used arterial spin labelling MRI to investigate voxel-wise CBF in 22q11DS individuals compared with age- and sex-matched healthy controls. RESULTS: Four significant clusters, involving the right and left putamen, right fusiform gyrus and left middle temporal gyrus, delineated significantly elevated CBF in individuals with 22q11DS compared to controls. Post-hoc analysis determined that this elevation in CBF trended with psychotic symptom diagnosis within the 22q11DS group. CONCLUSIONS: These findings suggest possible relevance to schizophrenia risk and support further functional neuroimaging studies of 22q11DS with larger sample sizes to improve our understanding of the underlying pathophysiology.


Assuntos
Síndrome de DiGeorge , Transtornos Psicóticos , Esquizofrenia , Humanos , Adulto , Síndrome de DiGeorge/diagnóstico por imagem , Síndrome de DiGeorge/complicações , Síndrome de DiGeorge/genética , Estudos de Casos e Controles , Transtornos Psicóticos/diagnóstico por imagem , Transtornos Psicóticos/complicações , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética , Esquizofrenia/complicações , Imageamento por Ressonância Magnética/métodos , Circulação Cerebrovascular
3.
Front Radiol ; 2: 929533, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37492666

RESUMO

Arterial spin labeling (ASL) is a non-invasive and cost-effective MRI technique for brain perfusion measurements. While it has developed into a robust technique for scientific and clinical use, its image processing can still be daunting. The 2019 Ann Arbor ISMRM ASL working group established that education is one of the main areas that can accelerate the use of ASL in research and clinical practice. Specifically, the post-acquisition processing of ASL images and their preparation for region-of-interest or voxel-wise statistical analyses is a topic that has not yet received much educational attention. This educational review is aimed at those with an interest in ASL image processing and analysis. We provide summaries of all typical ASL processing steps on both single-subject and group levels. The readers are assumed to have a basic understanding of cerebral perfusion (patho) physiology; a basic level of programming or image analysis is not required. Starting with an introduction of the physiology and MRI technique behind ASL, and how they interact with the image processing, we present an overview of processing pipelines and explain the specific ASL processing steps. Example video and image illustrations of ASL studies of different cases, as well as model calculations, help the reader develop an understanding of which processing steps to check for their own analyses. Some of the educational content can be extrapolated to the processing of other MRI data. We anticipate that this educational review will help accelerate the application of ASL MRI for clinical brain research.

4.
Biomed Opt Express ; 12(4): 2171-2185, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33996222

RESUMO

Phase-transition nanoparticles have been identified as effective theragnostic, anti-cancer agents. However, non-selective delivery of these agents results in inaccurate diagnosis and insufficient treatment. In this study, we report on the development of targeted phase-transition polymeric nanoparticles (NPs) for the imaging and treatment of breast cancer cell lines over-expressing human epidermal growth factor receptor 2 (HER2). These NPs contain a perfluorohexane liquid interior and gold nanorods (GNRs) stabilized by biodegradable and biocompatible copolymer PLGA-PEG. Water-insoluble therapeutic drug Paclitaxel (PAC) and fluorescent dye were encapsulated into the PLGA shell. The NP surfaces were conjugated to HER2-binding agent, Herceptin, to actively target HER2-positive cancer cells. We evaluated the potential of using these NPs as a photoacoustic contrast agent. The efficacy of cancer cell treatment by laser-induced vaporization and stimulated drug release were also investigated. The results showed that our synthesized PLGA-PEG-GNRs (mean diameter 285 ± 29 nm) actively targeted HER2 positive cells with high efficacy. The laser-induced vaporization caused more damage to the targeted cells versus PAC-only and negative controls. This agent may provide better diagnostic imaging and therapeutic potential than current methods for treating HER2-positive breast cancer.

5.
Oncotarget ; 8(12): 19631-19644, 2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-28129644

RESUMO

High-frequency ultrasound (~20 MHz) techniques were investigated using in vitro and ex vivo models to determine whether alterations in chromatin structure are responsible for ultrasound backscatter changes in biological samples. Acute myeloid leukemia (AML) cells and their isolated nuclei were exposed to various chromatin altering treatments. These included 10 different ionic environments, DNA cleaving and unfolding agents, as well as DNA condensing agents. Raw radiofrequency (RF) data was used to generate quantitative ultrasound parameters from spectral and form factor analyses. Chromatin structure was evaluated using electron microscopy. Results indicated that trends in quantitative ultrasound parameters mirrored trends in biophysical chromatin structure parameters. In general, higher ordered states of chromatin compaction resulted in increases to ultrasound paramaters of midband fit, spectral intercept, and estimated scatterer concentration, while samples with decondensed forms of chromatin followed an opposite trend. Experiments with isolated nuclei demonstrated that chromatin changes alone were sufficient to account for these observations. Experiments with ex vivo samples indicated similar effects of chromatin structure changes. The results obtained in this research provide a mechanistic explanation for ultrasound investigations studying scattering from cells and tissues undergoing biological processes affecting chromatin.


Assuntos
Cromatina/química , Leucemia Mieloide Aguda/diagnóstico por imagem , Leucemia Mieloide Aguda/patologia , Ultrassonografia/métodos , Animais , Núcleo Celular/ultraestrutura , Cromatina/genética , Humanos , Leucemia Mieloide Aguda/genética , Fígado/diagnóstico por imagem , Fígado/patologia , Camundongos , Camundongos SCID , Microscopia Eletrônica de Transmissão
6.
Oncoscience ; 3(3-4): 109-21, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27226984

RESUMO

Non-invasive monitoring of cancer cell death would permit rapid feedback on treatment response. One technique showing such promise is quantitative ultrasound. High-frequency ultrasound spectral radiofrequency analysis was used to study cell death in breast cancer cell samples. Quantitative ultrasound parameters, including attenuation, spectral slope, spectral 0-MHz-intercept, midband fit, and fitted parameters displayed significant changes with paclitaxel-induced cell death, corresponding to observations of morphological changes seen in histology and electron microscopy. In particular, a decrease in spectral slope from 0.24±0.07 dB/MHz to 0.04±0.09 dB/MHz occurred over 24 hours of treatment time and was identified as an ultrasound parameter capable of differentiating post-mitotic arrest cell death from classical apoptosis. The formation of condensed chromatin aggregates of 1 micron or greater in size increased the number of intracellular scatterers, consistent with a hypothesis that nuclear material is a primary source of ultrasound scattering in dying cells. It was demonstrated that the midband fit quantitatively correlated to cell death index, with a Pearson R-squared value of 0.99 at p<0.01. These results suggest that high-frequency ultrasound can not only qualitatively assess the degree of cancer cell death, but may be used to quantify the efficacy of chemotherapeutic treatments.

7.
Oncoscience ; 3(9-10): 275-287, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28050578

RESUMO

High frequency quantitative ultrasound techniques were investigated to characterize different forms of cell death in vitro. Suspension-grown acute myeloid leukemia cells were treated to cause apoptosis, oncosis, mitotic arrest, and heat-induced death. Samples were scanned with 20 and 40 MHz ultrasound and assessed histologically in terms of cellular structure. Frequency-domain analysis of 20 MHz ultrasound data demonstrated midband fit changes of 6.0 ± 0.7 dBr, 6.2 ± 1.8 dBr, 4.0 ± 1.0 dBr and -4.6 ± 1.7 dBr after 48-hour cisplatinum-induced apoptosis, 48-hour oncotic decay, 36-hour colchicine-induced mitotic arrest, and heat treatment compared to control, respectively. Trends from 40 MHz ultrasound were similar. Spectral slope changes obtained from 40 MHz ultrasound data were reflective of alterations in cell and nucleus size. Chromatin pyknosis or lysis trends suggested that the density of nuclear material may be responsible for observed changes in ultrasound backscatter. Flow cytometry analysis confirmed the modes of cell death and supported midband fit trends in ultrasound data. Scatterer-size and concentration estimates obtained from a fluid-filled sphere form factor model further corresponded with spectral analysis and histology. Results indicate quantitative ultrasound spectral analysis may be used for probing anti-cancer response and distinguishing various modes of cell death in vitro.

8.
Cell Cycle ; 14(18): 2891-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26178635

RESUMO

Current methods to evaluate the status of a cell are largely focused on fluorescent identification of molecular biomarkers. The invasive nature of these methods - requiring either fixation, chemical dyes, genetic alteration, or a combination of these - prevents subsequent analysis of samples. In light of this limitation, studies have considered the use of physical markers to differentiate cell stages. Acoustic microscopy is an ultrahigh frequency (>100 MHz) ultrasound technology that can be used to calculate the mechanical and physical properties of biological cells in real-time, thereby evaluating cell stage in live cells without invasive biomarker evaluation. Using acoustic microscopy, MCF-7 human breast adenocarcinoma cells within the G1, G2, and metaphase phases of the proliferative cell cycle, in addition to early and late programmed cell death, were examined. Physical properties calculated include the cell height, sound speed, acoustic impedance, cell density, adiabatic bulk modulus, and the ultrasonic attenuation. A total of 290 cells were measured, 58 from each cell phase, assessed using fluorescent and phase contrast microscopy. Cells actively progressing from G1 to metaphase were marked by a 28% decrease in attenuation, in contrast to the induction of apoptosis from G1, which was marked by a significant 81% increase in attenuation. Furthermore late apoptotic cells separated into 2 distinct groups based on ultrasound attenuation, suggesting that presently-unidentified sub-stages may exist within late apoptosis. A methodology has been implemented for the identification of cell stages without the use of chemical dyes, fixation, or genetic manipulation.


Assuntos
Apoptose/fisiologia , Ciclo Celular/fisiologia , Microscopia Acústica/métodos , Humanos , Células MCF-7 , Distribuição Normal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA